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Brownian trajectory simulation methods are employed to fully establish the non-Gaussian fluctuation effects
predicted by our nonlinear Langevin equation theory of single particle activated dynamics in glassy hard-
sphere fluids. The consequences of stochastic mobility fluctuations associated with the space-time complexities
of the transient localization and barrier hopping processes have been determined. The incoherent dynamic
structure factor was computed for a range of wave vectors and becomes of an increasingly non-Gaussian form
for volume fractions beyond the �naive� ideal mode coupling theory �MCT� transition. The non-Gaussian
parameter �NGP� amplitude increases markedly with volume fraction and is well described by a power law in
the maximum restoring force of the nonequilibrium free energy profile. The time scale associated with the NGP
peak becomes much smaller than the � relaxation time for systems characterized by significant entropic
barriers. An alternate non-Gaussian parameter that probes the long time � relaxation process displays a
different shape, peak intensity, and time scale of its maximum. However, a strong correspondence between the
classic and alternate NGP amplitudes is predicted which suggests a deep connection between the early and final
stages of cage escape. Strong space-time decoupling emerges at high volume fractions as indicated by a
nondiffusive wave vector dependence of the relaxation time and growth of the translation-relaxation decou-
pling parameter. Displacement distributions exhibit non-Gaussian behavior at intermediate times, evolving into
a strongly bimodal form with slow and fast subpopulations at high volume fractions. Qualitative and semi-
quantitative comparisons of the theoretical results with colloid experiments, ideal MCT, and multiple simula-
tion studies are presented.
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I. INTRODUCTION

The glassy dynamics of colloidal suspensions, hard-
sphere fluids, and thermal liquids are intensely studied and
unsolved problems �1�. The underlying cause of the precipi-
tous increase of relaxation times and viscosity with decreas-
ing temperature or increasing volume fraction remains a
source of controversy. The relative importance of thermody-
namics and kinetics continues to be debated, and a wide
variety of seemingly disparate models have been proposed
�1,2�. The mode-coupling theory �MCT� is a microscopic,
force-based description of slow dynamics that has made
many unique and important predictions �3�. In its “idealized”
form �IMCT� it addresses dynamical slowing down and lit-
eral arrest due to many particle caging. By empirically ad-
justing the location of an ideal nonergodicity transition,
IMCT predictions achieve quite good agreement with experi-
ments and simulations for many �but not all� properties in the
dynamical precursor regime corresponding to the initial
changes of relaxation times and the diffusion constant by
2–4 decades �3�. However, the prediction of an ideal kinetic
glass transition �simultaneous divergence of the viscosity and
all relaxation times� is not seen in experiment. It is generally
agreed that IMCT cannot address the deeply supercooled �or
overcompressed� fluid regime where experiments �1�, theory
�2,4,5�, and simulations �2,6–8� suggest activated transport
over barriers is likely the dominant factor and heterogeneous

dynamics becomes prominent. Computer simulations based
on Newtonian �6�, Brownian �7�, and so-called stochastic �7�
dynamics, and also megabasin landscape analyses �8�, all
find activated hopping is important at or above (below) the
empirically deduced MCT critical temperature �volume frac-
tion�.

We have recently developed a theory for single particle
barrier hopping dynamics based on a nonlinear stochastic
Langevin equation. The simplest formulation is for hard-
sphere fluids or suspensions �9,10�, and the ideas have been
extended to treat colloidal gelation �11,12�, suspensions com-
posed of rigid nonspherical objects �13�, deeply supercooled
polymer melts in both the bulk �14,15� and multiple aniso-
tropic situations �16�, sub-Tg polymer glasses �17�, and non-
linear rheology �18–20�. The volume fraction dependence of
the mean relaxation time, viscosity, diffusion constant, and
other properties of hard-sphere fluids have been quasianalyti-
cally computed, and many of the no adjustable parameter
results are in good agreement with experiments on athermal
suspensions �9,10�. This quasianalytic approach involves a
type of mean-field treatment. In reality, glassy fluids exhibit
significant dynamic heterogeneity and mobility fluctuations
�1,21–25� even in the dynamical precursor regime which are
not captured by ideal MCT. An important feature underlying
these effects is a broad distribution of characteristic relax-
ation times and rates.

The most obvious source of dynamic fluctuations in our
approach is the stochastic nature of the activated barrier hop-
ping process, a full accounting of which requires numerical
solution of a stochastic nonlinear Langevin equation and al-*Electronic address: kschweiz@uiuc.edu
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lows the calculation of all single particle time-dependent
quantities. Very recently we presented the conceptual and
algorithmic elements required to implement this approach
�26�. Results for the mean square displacement, characteris-
tic time scales, decoupling of rates and times, and cage scale
relaxation were given. In this paper we complete our study
by addressing all non-Gaussian phenomena associated with
slow single particle dynamics in hard-sphere fluids. The fluc-
tuation effects of primary interest include the classic and
alternate non-Gaussian parameters �27�, the wave vector de-
pendence of the incoherent dynamic structure factor, length
scale dependent decoupling of diffusion and relaxation, bi-
furcation of particle mobility into slow and fast subpopula-
tions, and the particle displacement required for recovery of
Fickian diffusion.

A primary goal of our recent �26� and present work is to
establish how much of the rich dynamics of glassy simple
fluids can be understood from the elementary process of ac-
tivated hopping on the particle �cage� length scale. A second
goal is to provide insight concerning the seemingly perplex-
ing question of why ideal MCT can describe many aspects of
the precursor regime dynamics well �e.g., transport coeffi-
cients, mean square displacements, two-step decay of corr-
elators, etc. �3��, but fails to capture strongly non-Gaussian
or dynamic heterogeneity aspects. We note the phrase “dy-
namic heterogeneity” usually refers to phenomena associated
with spatial correlations of the motion of different particles
as encoded in multipoint �typically four� correlation func-
tions or susceptibilities. The latter are not described by our
approach, and hence the present work can be viewed as
quantifying the manifestations or implications of dynamic
heterogeneity at the standard �and easily measurable� two-
point correlation function level.

In Sec. II we briefly review our theory but refrain from
repeating the detailed discussions of previous papers, espe-
cially the technical aspects of the recent stochastic trajectory-
based study �26�. Section III presents calculations of the in-
coherent dynamic structure factor, its characteristic decay
time and degree of nonexponentiality, and wave vector de-
pendent decoupling of diffusion and relaxation. Section IV
studies the classic and alternate �27� non-Gaussian param-
eter. In Sec. V results for the distribution of particle displace-
ments are given, and we conclude in Sec. VI. Throughout the
paper our theoretical results are compared to experiments on
�nearly� hard core colloidal suspensions and a variety of
computer simulations. The comparisons are made at a quali-
tative and semiquantitative level, a restriction which is un-
avoidable for two reasons. First, we aim at a no adjustable
parameter confrontation with experiment and simulation, not
one based on fitting parameters. Second, the experimental
suspensions involve slightly charged polydisperse colloids
and hydrodynamic effects, and the simulation models are
characterized by polydispersity, nonhard core repulsions,
and/or involve thermal binary Lennard-Jones mixtures
�BLJM�, complications beyond the monodisperse hard-
sphere fluid model of present study.

II. ENTROPIC BARRIER HOPPING THEORY
OF GLASSY DYNAMICS

Our theory of glassy dynamics in hard-sphere fluids was
originally heuristically proposed �9� as an extension of naive

ideal MCT �28� to treat barrier hopping. Recently a micro-
scopic statistical mechanical derivation has been achieved
�29�. The physical motivations, technical approximations and
limitations, and numerical implementation are all described
in detail elsewhere �9,10,26,29�. Briefly, the approach is built
on a locally solid state, or inhomogeneous fluid, picture of
slow single particle dynamics as embodied in a stochastic
nonlinear Langevin equation in the overdamped �no inertial
effects� Brownian regime. For suspensions, hydrodynamic
interactions enter only as they influence the short time/
distance dissipative dynamics at the one and two particle
level. The interparticle force contribution to the stochastic
equation of motion is rendered tractable based on a local
equilibrium idea common to dynamic density functional
theory approaches �30,31�. This allows the instantaneous in-
termolecular forces that are the origin of caging to be renor-
malized in an effective potential manner via the structure
factor of the fluid �32�. Temporal deviations from locally
stable initial positions are modeled in an Einstein solid spirit
�28� with particle-displacement dependent Debye-Waller fac-
tors �9,29�. Dynamic closure at the tagged particle level is
achieved based on a self-consistent approximation �9,28,32�
that relates collective local dynamics to its single particle
analog.

The closed nonlinear stochastic Langevin equation of mo-
tion for the instantaneous scalar particle displacement in the
overdamped limit is �9,29�

�s
�r�t�
�t

= −
�Fef f�r�t��

�r�t�
+ �f�t� , �1�

where r�0�=0, the random force satisfies ��f�0��f�t��
=2kBT�s��t�, and �s=kBT /Ds is the short time friction con-
stant �computed based on independent binary collisions
�9,10��. The nonequilibrium free energy is

Fef f�r� = − 3 ln�r� −� dq�

�2��3�C2�q�S�q��1 + S�q��−1

�e−�q2r2/6��1+S−1�q�� � Fideal + Fexcess, �2�

where C�q� and S�q� are the Fourier-transformed direct cor-
relation function and static structure factor, respectively,
which are computed based on the Percus-Yevick integral
equation theory �32�, and � is the number density. Results for
the nonequilibrium free energy of a hard-sphere fluid �par-
ticle diameter �� and volume fraction � are shown in Fig. 1.
A local minimum emerges at �MCT=0.432 that defines the
naive IMCT nonergodicity transition. In our approach this
signals the onset of transient particle localization and a cross-
over to activated dynamics. In the absence of inertial effects
the theory applies to both hard-sphere fluids and Brownian
colloidal suspensions, differing only in the elementary time
scale set by the short time dynamics.

The nonequilibrium free energy �Fig. 1� is a monotoni-
cally decreasing function of particle displacement at volume
fractions below �MCT. Above the crossover an entropic bar-
rier of height FB emerges which is proportional �for �
	0.5� to the inverse of the dimensionless isothermal com-
pressibility �inset of Fig. 1�. Figure 2 presents important
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length scales which include the MCT localization length rL
�displacement corresponding to the minimum of Feff�r��, dis-
placement of the maximum restoring force R*, and the bar-
rier location, rB. All length scales are normalized by the hard
sphere diameter and energies by kBT. The mean first passage
time over the barrier, 
K, can be calculated from the high
friction version of Kramers theory �33�


K


0
= 2�

�s

�0

eFB/kBT

	K̃0K̃B

, �3�

where the elementary Brownian time 
0=�2�0 /kBT, for col-

loids �0 is the Stokes-Einstein friction constant, and K̃0 and

K̃B are the dimensionless harmonic curvatures of the well
and barrier, respectively �9�. All time scales are expressed in
units of the elementary Brownian time.

The dynamics described by Eqs. �1� and �2� places no
restrictions on the lifetime of the barrier and allows trajec-
tory recrossing to indefinitely long times. The latter is not
physically appropriate since our approach invokes a direct
connection between single particle and collective dynamics
and barrier hopping signals structural relaxation and the re-
lease of caging constraints �26,29�. Hence a dynamical cross-
over from the local equilibrium picture of Eqs. �1� and �2� to
a homogeneous fluid linear three-dimensional �3D� Langevin
description is required which is implemented by modifying
Eq. �1� as �26�

−
�Fef f

�r�t�
→ − �hop���

�r�

�t
. �4�

Here a hopping friction constant is introduced to account for
the frictional resistance associated with the barrier hopping

event. As described previously �26�, to quantitatively imple-
ment this idea a cage escape displacement or “reaction point”
is introduced in analogy with the dividing surface that de-
fines reactants and products in chemical reactions �34�. The
reaction point is not treated as an adjustable or fitting param-
eter. Rather, it is computed based on a physically motivated
criterion for the validity of the highly-localized form of the
translational entropy free energy �35� or irrelevance of the
localizing cage force �26�. Alternative implementations of
the reaction point idea all yield very similar results corre-
sponding to a weakly volume fraction dependent r†


0.5–0.6 �26�. The transition in dynamical description from
Eqs. �1� and �2� to Fickian motion is executed on a single-
trajectory basis. Trajectories that have passed the reaction
point diffuse with an enhanced friction constant �s→�s
+�hop, where

1

�hop
=

1

N
�

i

1

�hop,i
. �5�

In Eq. �5� the trajectory friction constant �hop,i�6ti
† /r†2

, ti
† is

the time for the ith trajectory to pass the reaction point, and
the number of trajectories, N, is typically 40 000 �26�. A
“hopping diffusion constant” can be defined, Dhop
=kBT /�hop, and the observable long-time diffusion constant
is

FIG. 1. Nonequilibrium “free energy” �units of thermal energy�
as a function of dimensionless displacement for �from top to bot-
tom�: �=0.3, 0.432, 0.50, and 0.57. The barrier height is indicated,
along with the locations of the local minimum �rL�, barrier �rB�, and
maximum restoring force R* for �=0.5. The four regimes of dy-
namical behavior �1�-�4� discussed in Ref. �9� are also indicated.
Inset: Entropic barrier as a function of volume fraction �points�. The
smooth curve is a fit to an inverse dependence on the dimensionless
compressibility, FB0.08/S0, where S�q=0�=S0 �9�.

FIG. 2. Length scales. Nonequilibrium free energy profile: lo-
calization length �rL�—lower solid line; location of maximum re-
storing force R*—middle solid line; barrier location �rB�—upper
solid line; reaction point �r†�—dashed line. Dynamic length scales
determined from numerical solution of the Langevin equation: dy-
namic localization length defined as the displacement of maximum
non-Fickian behavior of �r2�1/2 �or the quasiplateau �r2�plateau

1/2

�26��—solid down triangles; root mean square displacement �MSD�
corresponding to the maximum of classic non-Gaussian parameter
�r��—solid squares; root MSD corresponding to the maximum of
alternate NGP �r��—up triangles; root MSD at the � relaxation time
�r*�—circles. Experimental length scales �45�: root MSD of the
maximum non-Fickian behavior of �r2�1/2—open down triangles;
root MSD corresponding to the maximum of the NGP—open
squares.
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D =
kBT

�s + �hop
. �6�

The above approach invokes the idea that after a reaction
event trajectory propagation is described by the standard dif-
fusive Langevin equation with a unique ensemble averaged
friction constant. We believe this is an internally consistent
procedure for switching from a local equilibrium solid-state
picture of the fluid to the irreversible viscous limit. The spe-
cifics of the method do quantitatively influence our predic-
tions for non-Gaussian fluctuation effects. However, if
switching to Cartesian Fickian diffusion is not done then all
the dynamic fluctuation effects become larger than those
based on the crossover idea embodied in Eqs. �4�–�6� �26�.

A particularly important and relevant prior result is our
prediction of the breakdown of the Stokes-Einstein relation
between the self-diffusion constant �D� and ��� relaxation
time �
*, see Sec. III A�. At high volume fractions a frac-
tional Stokes-Einstein relation is found, D� �
*�−z, with z
0.77 �26�. Moreover, at �=0.57 the product or decoupling
factor D
* has increased by a factor of 10 relative to its
“normal fluid” value ��0.4�. This is consistent with very
recent simulations of a polydisperse hard-sphere-like model
which find decoupling factors of 8–15 at the highest vol-
ume fractions studied �36�.

The present work studies the same eleven volume frac-
tions previously examined �26� which fall in the interval
0.4�0.57. The barrier is 1 kBT at �=0.5 and grows to
6.7 kBT.

III. INCOHERENT DYNAMIC STRUCTURE FACTOR

A. Characteristic decay time, superposition, and stretching

The incoherent dynamic structure factor, F�q , t�
��eiq� ·r��t��, has been computed at five wave vectors: 2.6 �−1,
a relatively small value; q*, the first peak of the structure
factor; q2, the second peak of the structure factor; and two
wave vectors intermediate between 2.6 �−1 and q* :qa�qb�
=2.6�−1+1/3�2/3��q*−2.6�−1�. Results are shown in Fig. 3
for a low ��=0.43� and high ��=0.55� volume fraction �37�.
For the highest wave vector a clear two-step decay is ob-
served; however, for all smaller wave vectors it is not, per-
haps because the theory quantitatively underpredicts the tran-
sient localization length and hence the amount of decay of
F�q , t� due to the short time dynamical process �26�. For the
lower volume fraction �Fig. 3�a�� relaxation clearly slows
with decreasing wave vector. However, at high volume frac-
tions the distinction among the various wave vectors be-
comes less pronounced. For the �=0.55 case shown, the
final decay on all length scales �except q�=2.6� is nearly
identical. This trend is qualitatively understandable from our
prior general statistical dynamical analysis as a consequence
of non-Fickian motion and a growing viscoelastic correlation
length �D �38�.

A characteristic wave vector-dependent relaxation time

�q� is defined as F�q ,
�q��=1/e. The time scale corre-
sponding to relaxation at the first peak of the structure factor,

�q=q*�=
*, is a common measure of the structural or �

relaxation time. Results are shown in the inset of Fig. 4. The
� time increases steeply with volume fraction and is very
well described as an exponential function of the barrier
height. Ideal MCT �3� inspired critical power law fits, 
*

��c−��−�, with �c=0.57 ��=2.4� and �c=0.58 ��=3.0�,
also provide a good empirical representation of the relax-
ation time data except at high volume fractions where such a
form cannot described our nondivergent �below random
close packing� theoretical results. The volume fraction de-
pendence of the relaxation times for the other four wave
vectors studied are also well fit by critical power laws �not
shown�. The extracted empirical critical exponents are given
in Table I, and modestly increase as the probing length scale
diminishes. Despite the length scale variations of apparent
exponents, normalization of the 
�q� calculations for each
wave vector by the corresponding �=0.5 value results in

FIG. 3. Incoherent dynamic structure factor �solid lines� with
stretched exponential fits �dashed lines�. �a� �=0.43; dimensionless
wave vectors from left: q2=12.70, q*=6.74, qb=5.36, qa=3.98, 2.6.
�b� �=0.55; dimensionless wave vectors from left: q2=12.97, q*

=7.21, qb=5.68, qa=4.14, 2.6. Inset: schematic of static structure
factor with wave vectors for F�q , t� calculations marked.
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�not shown� a substantial collapse �to within a factor of two�
for the barrier controlled slow dynamics regime correspond-
ing to �=0.5−0.57.

An interesting question is whether for a given wave vec-
tor the incoherent dynamic structure factor at various volume
fractions can be superimposed onto a master curve. To ad-
dress this we normalize the time axis by the characteristic
wave vector dependent relaxation time, 
�q ,��. Results for
the cage-scale structure factor F�q* , t /
*� are shown in Fig.
4. An excellent collapse is obtained suggesting structural re-
laxation is controlled by a single characteristic time both at
lower fluid-like volume fractions �no barrier� and at high
�barrier hopping controlled� volume fractions. Detailed
analysis of calculations for the other four wave vectors has
been performed which we only briefly summarize. The high-
est wave vector F�q2 , t� results do not collapse well, likely

because the short time dynamical process can induce signifi-
cant relaxation on this smallest length scale. However, if
time is nondimensionalized by the relaxation time when
F�q2 , t�=0.1, then the final stages of the decay �last 30%�
collapse well when barriers are greater than the thermal en-
ergy ��	0.5�. A good collapse of F�q , t /
�q ,��� is found
for the smallest wave vector �q�=2.6� when ��0.5, and a
very good or excellent collapse is found at all volume frac-
tions for qa and qb.

The shape of the dynamic structure factor at intermediate
times can be fit by

F�q,t�  exp�− �t/a
�q���� , �7�

where the exponent � quantifies nonexponentiality. Ex-
amples are shown in Fig. 3. The fit parameter a1 is weakly
� dependent. Effective exponents have been extracted for the
intermediate three wave vectors studied by fitting over the
range 0.1�F�q , t��0.8. The exponents are close to unity
and very weakly dependent on volume fraction with:��qa�
�1.06±0.06 and ��qb��0.98±0.03, ��q*��0.87±0.03
�39�.

The root mean square displacement at the � relaxation
time, r*, is shown in Fig. 2. It is 0.4 and essentially con-
stant below the �naive� mode-coupling transition. For high
barrier-dominated volume fractions, r* increases linearly
with � and approaches a particle diameter for the most con-
centrated system studied. The significantly increased dis-
placement required to achieve structural relaxation at high
volume fractions is another indication of decoupling between
translation diffusion and structural relaxation �26�.

B. Wave vector-dependent decoupling and dynamic correlation
length

If single particle dynamics are purely Gaussian then the
wave vector dependent relaxation time obeys the Fickian re-
lation Dq2
�q�=1. To quantify deviations from Fickian be-
havior a wave vector-dependent decoupling factor is defined

R�q� � Dq2
�q� . �8�

In the limit q→0, or if the dynamics are smooth �e.g., below
�MCT in our approach�, Gaussian behavior must or is ex-
pected to occur, respectively, corresponding to R�q�→1.
Calculations of R�q� at several volume fractions are shown in
Fig. 5. For volume fractions below the emergence of a bar-
rier R�q�1 and q independent, i.e., diffusive type motion.
For ��0.43, R�q� is an increasing function of wave vector
and volume fraction. MCT predicts �for ���MCT� R�q�
1 for q�5 �40�, consistent with our results below the
�naive� ideal glass transition volume fraction. Our non-MCT
finding of R�q��1 for ���MCT is a manifestation of the
crossover to an activated hopping transport mechanism as
found in a recent simulation �40,41�.

For barrier-controlled dynamics ��	0.5� Fig. 5 shows
that the q-dependent decoupling factor is well fit by a para-
bolic dependence on wave vector

FIG. 4. Incoherent dynamic structure factor at the cage peak as
a function of scaled time, F�q=q* , t� vs t /
�q*�, for �=0.43 �solid�,
0.465 �dashed�, 0.5 �solid�, 0.53 �dashed�, 0.55 �solid�. Inset: �
relaxation time as a function of volume fraction with a critical
power law fit, 
*��c−��−� where �c=0.57 and �2.4 �solid
line�, and an exponential in barrier height fit, 
*eaFB with a
0.95 �dashed line�.

TABLE I. Effective exponents extracted from fitting the volume
fraction dependence of the characteristic decay time of the incoher-
ent structure factor at five wave vectors to an ideal MCT critical
power law form, 
�q�� ��c−��−��q�. All fits are performed over the
range �=0.5–0.55.

���c=0.57� ���c=0.58�


�q�=2.6� 1.88 2.40


�q=qa� 2.10 2.68


�q=qb� 2.27 2.89


�q=q*� 2.38 3.04


�q=q2� 2.59 3.31
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R�q� = 1 + �LD
q

2�
�2

. �9�

This functional form is motivated by our analytic statistical
dynamical analysis of the crossover from non-Fickian to
Fickian diffusion which finds in the Markov limit, corre-
sponding to F�q , t�→e−t/
D�q�, the relaxation rate is given by

D

−1�q�=q2D / �1+ �q�D�2� where the Fickian crossover or vis-
coelastic length obeys �D�	D
* �38�. The latter result has
also been obtained based on a coarse grained kinetically con-
strained or dynamic facilitation model �42�. The length scale
LD extracted by using Eq. �9� is plotted as a function of
volume fraction in the inset to Fig. 5. It varies from one to
three particle diameters and increases roughly linearly with
volume fraction. The unfilled circles in the inset of Fig. 5 are
proportional to our calculations of 	D
*, which clearly fol-
low a very similar � dependence thereby demonstrating LD

�	D
* to high accuracy.
Recent BLJM simulations �43� have quantified non-

Gaussian relaxation via a wave vector-dependent decoupling
factor determined from the incoherent dynamic structure fac-
tor

X =

�q,T�D�T�


�q,T0�D�T0�
, �10�

where T0 is the onset temperature �8� for slow dynamics.
Wave vectors were normalized by a temperature dependent
coherence length ��T� extracted from the wave vector depen-
dence of a particular multipoint collective dynamic structure
factor. This decoupling factor at various temperatures was

then found to collapse �for 0.6�q��7.21� onto a single
curve which is well fit by: X�q��T��1+ �q��T� /10�� with
�1.6. To make contact with this study we define the analo-
gous decoupling factor appropriate for our athermal hard-
sphere system

XHS =

�q,��D���


�q,� = 0.4�D�� = 0.4�
. �11�

The lowest volume fraction for which we have performed
calculations, �=0.4, is employed as an effective onset point
used only for �q dependent� normalization. The normalized
quantity XHS�qLD� for 2.6�q��7.3 and �	0.5 is shown in
Fig. 6 �for ��0.5 there is no significant decoupling�. Re-
markably, our calculations collapse onto a single curve based
on the length scale LD which, although not rigorously
equivalent to ��T�, embodies similar physical ideas. It is sig-
nificant to note that this collapse is associated with volume
fractions where barrier hopping controls the long time relax-
ation and diffusion. Moreover, it emerges as a consequence
of the most elementary aspect of slow glassy dynamics: the
initial activated escape from a caged or transiently localized
state. Figure 6 shows that an adjusted power law of the form
found in the simulation study �43�, XHS�qLD�1+c�qLD��,
is an excellent description of our master curve for �
=1.5–2.0, with �=1.7 yielding the most accurate fit.

IV. TIME-DEPENDENT NON-GAUSSIAN PARAMETERS

A. Classic and alternate non-Gaussian parameter

The leading order correction to the Fickian form of the
incoherent dynamic structure factor is quantified by the clas-
sic non-Gaussian parameter �NGP�

FIG. 5. Wave vector-dependent decoupling factor R�q� for �
=0.43 �squares�, 0.50 �diamonds�, 0.53 �circles�, 0.55 �triangles�.
Dashed line is R�q�=1. Solid curves are fits to the functional form:
Dq2
�q�=1+ �LDq /2��2. Inset: dynamic length scale LD extracted
from the fit of Eq. �9� to the theoretical calculations �filled circles�.
Open circles are a�D
*�1/2, with a prefactor a=5.65 adjusted to fit
LD at �=0.53. Line is a linear fit: LD=26�−12.

FIG. 6. Alternate wave vector-dependent decoupling factor
XHS=D���
�q ;�� / �D�0.4�
�q ;0.4�� as a function of wave vector
nondimensionalized by the dynamic length scale LD. Points: �
=0.5–0.57 using LD extracted from Fig. 5. Curve: 1+c�qLD��, with
fit exponent �=1.7.

ERICA J. SALTZMAN AND KENNETH S. SCHWEIZER PHYSICAL REVIEW E 74, 061501 �2006�

061501-6



�2�t� =
3

5

�r4�t��
�r2�t��2 − 1. �12�

This NGP emphasizes deviations from simple diffusive mo-
tion at relatively short times and small displacements. In the
normal fluid regime its maximum amplitude is typically
0.1–0.2 �44�. Ideal MCT predicts very small NGP’s for all
fluid states with a maximum value of 1/3 for hard spheres
as the ideal nonergodicity transition is approached �3,40�. In
strong contrast, confocal microscopy experiments �45,46�
and simulations of polydisperse hard spheres �36,47� find the
NGP grows monotonically with volume fraction attaining
much larger maxima, e.g., 2–5 at �0.53–0.55. Recent
molecular dynamics simulations of the BLJM model find the
NGP maximum is 6–10 at a temperature 10% below the
empirical MCT critical temperature �48�. Such strongly non-
Gaussian behavior has been established in detail by Flenner
and Szamel via Brownian dynamics simulations of the
BLJM model, and quantitative comparisons with MCT were
carried out �27,40,49�. Near the empirically determined criti-
cal temperature, MCT severely underestimates the amplitude
of the NGP by at least an order of magnitude. Moreover,
MCT predicts the NGP saturates as Tc is approached, in
qualitative contrast to the monotonic and unbounded growth
with cooling found in the simulations. Other fluctuation ef-
fects �e.g., bimodal displacement distributions indicating mo-
bility bifurcation� were also found, and all strong non-
Gaussian effects were either very poorly accounted for, or
absent, in ideal MCT.

Our calculations of the NGP are shown in Fig. 7 �50�.
Interestingly, the MCT result that the peak does not exceed
0.33 is in remarkably good agreement with our results for
volume fractions below �MCT �Fig. 7�a��. However, at high �
�Fig. 7�b�� the peak greatly exceeds the MCT upper bound
and grows strongly in a manner consistent with confocal
experiments �45,46� and simulations of polydisperse hard-
spheres �36,47� and the binary LJ mixture �27,40,48,49�.

An alternate quantification of non-Gaussian behavior has
been introduced in recent simulation work of Szamel and
Flenner �27�

��t� =
1

3
�r�t�2�� 1

r�t�2� − 1. �13�

In contrast to the classic NGP, this function emphasizes de-
viations from Fickian behavior at relatively long times and
large displacements. The simulation study of the BLJM
found that the time associated with the maximum of the al-
ternate NGP closely tracks the � relaxation time �a factor of
1.5–2 times larger but with the same temperature depen-
dence�, in qualitative contrast with the classic NGP. Our cal-
culations of the alternate NGP are shown in Fig. 8. Its shape,
and time and amplitude of the maximum, are all clearly dif-
ferent from the behavior of the classic NGP, in a manner
qualitatively very similar to that found in simulation �27�.

B. Characteristics of the maximum non-Gaussian state

The maximum value of the classic NGP, �2,max, is shown
as a function of volume fraction in Fig. 9. The peak height of

the alternate NGP is shown in the inset of Fig. 10, and to a
remarkably good approximation is proportional to the ampli-
tude of the classic NGP, obeying �max8.8 �2,max−2.7. This
suggests a deep connection between non-Fickian dynamics
on relatively short time/distance scales �early aspects of cage
escape� and the final � relaxation process �barrier hopping�.
Such a connection between relatively short and long time
cage escape dynamics has been repeatedly found in experi-
mental studies of thermal glass forming materials �1�. The
alternate NGP maximum is significantly larger than its clas-
sic analog. This seems intuitive since the � process is asso-
ciated with rare fluctuations needed to surmount the barrier, a
process likely more heterogeneous than the in-cage process
�late � stage� that the classic NGP probes. Recent simula-
tions of the BLJM model also find a linear relationship be-
tween the peak amplitudes of the NGP and its alternate ana-
log �27,51�. Near Tc the alternate NGP amplitude is 3.5
and 11 for the two mixture species, which is larger than the
classic NGP, although smaller than our monodisperse hard-
sphere fluid results.

Figure 9 shows the volume fraction dependence of �2,max
can be described as an exponential function of � with a

FIG. 7. Classic non-Gaussian parameter as a function of reduced
time. �a� Low volume fractions: �=0.4, 0.415, 0.43; horizontal line
indicates the ideal MCT limiting maximum value �2,max0.33. �b�
High volume fractions: �=0.465, 0.5, 0.515, 0.53, 0.54, 0.55, 0.56,
0.57.
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change in slope near the volume fraction where the barrier is
of order the thermal energy, or alternatively as an empirical
critical power law if the barrier is not too high. The latter
qualitative behavior is also found in the Brownian BLJM
simulations if temperature is not too low �49�. However, the
best, simplest and most physically intuitive functional form
that describes our theoretical results over the entire volume

fraction regime is a power law in the maximum cage restor-
ing force, �2,max� f*1.73�e31� �inset to Fig. 9�. This seems
natural since the degree of nondiffusive behavior is expected
to be maximized when the effective caging force on a par-
ticle is largest. Recall the location of the maximum restoring
force at R* is a small length scale �see Fig. 2� corresponding
to the early stages of cage escape �52�.

It is of interest to ask how far a particle has typically
diffused �i.e., the root mean square displacement� when the
classic NGP achieves its maximum, r�; results are shown in
Fig. 2. Below the naive MCT crossover r�0.3 and is con-
stant, while above �MCT we find r� diminishes with increas-
ing volume fraction. At high volume fractions r��0.1 and
lies just beyond the location of maximum restoring force
�R*� and well below the barrier. The root mean square dis-
placement associated with the peak alternate NGP is also
shown in Fig. 2. In the Brownian BLJM simulations this
quantity is approximately half a particle diameter at high
temperature, and then monotonically increases below the on-
set temperature growing to 0.9–1.2 particle diameters at
the lowest temperature examined �27�. As found in this simu-
lation, our crossover length is constant and of order � /2
prior to the MCT crossover, and then increases �by a factor
of 2� with volume fraction. This length scale varies nearly
in parallel with the � relaxation displacement r* at high vol-
ume fractions.

The time associated with the maximum of the classic
NGP, 
�, is remarkably slowly varying and at high volume
fractions increasingly lags other characteristic time scales.
Figure 10 shows the ratio of the NGP peak and � times
�
� /
*� decreases from �0.5 below the naive MCT cross-
over, to 0.15 at �=0.5, to less than 0.01 at very high �.
Hence, as volume fraction increases the � time occurs in-

FIG. 8. Alternate non-Gaussian parameter as a function of re-
duced time for �=0.43, 0.465, 0.5, 0.515, 0.53, 0.55, 0.56. Inset:
Alternate NGP for �=0.55 on linear time scale �solid line� with a
linear short-time fit, �4.7�t /
0� and exponential long-time fit
�e−0.037�t/
0� �dashed�.

FIG. 9. Maximum value of the NGP as a function of volume
fraction �points�. Error bars are symbol size or smaller. Solid curve
is a critical power law fit for the lower volume fraction regime:
�2,max� ��c−��−� with �c=0.575,�
2.17; a critical power law
also describes the higher volume fraction regime well �not shown�
for 0.5�0.55 with a significantly smaller apparent exponent of
�1.5. Dashed lines are exponential fits: �2,max�exp�b�� with b
=18.7 �low ��, 34.3 �high ��. Inset: maximum of classic non-
Gaussian parameter plotted versus the maximum restoring force
�f*�. Curve: �2,max� f*1.73.

FIG. 10. Time scales of the two non-Gaussian parameters com-
pared to the � relaxation time, with error bars. Squares: 
� /
*. Up
triangles: 
� /
*. Inset: maximum of alternate non-Gaussian param-
eter, �max, plotted versus the maximum of classic NGP, �2,max. Error
bars �vertical and horizontal� are symbol size or smaller except
where shown. Linear fit: �max�8.8�2,max−2.7.

ERICA J. SALTZMAN AND KENNETH S. SCHWEIZER PHYSICAL REVIEW E 74, 061501 �2006�

061501-8



creasingly farther into the long-time branch of the NGP, con-
sistent with simulations �27,40�. The value of the NGP at the
� time relative to its maximum is a �approximately linearly�
decreasing function of volume fraction. This indicates that
deep in the glassy regime the classic NGP is not a measure of
structural relaxation �27�. By contrast, the time associated
with the maximum alternate NGP, 
�, closely tracks the �
time, as demonstrated in Fig. 10. Consistent with simulation
�27�, 
� /
* is slightly greater than unity and roughly constant
with volume fraction.

Odagaki and Hiwatari �53� have argued the product

��2�
�� is sensitive to the non-Gaussian aspects of particle
motion. In particular, the quantity Q= �
��2�
���−1/4 is sug-
gested to decrease roughly linearly with cooling or increase
of density. This idea has been recently tested by simulations
of a polydisperse hard-sphere fluid �36� for 0.52���0.59.
A linear dependence of �
��2�
���−1/4 on � was found and an
accurate fit to the simulation results is shown in Fig. 11. Note
the smooth change of this quantity with volume fraction in-
dicating no qualitative change in the non-Gaussian nature of
particle motion and no indication of a singularity. The vol-
ume fraction range studied in the simulation corresponds to
values at which our theory predicts motion is controlled by
activated processes. The theoretical results for Q��� are
shown in Fig. 11, and a linear decrease with � is predicted in
good agreement with simulation �36�. Moreover, both the
theoretical and simulation results extrapolate to a hypotheti-
cal ideal glass state �Q=0� at a similar volume fraction of
0.60–0.61, which is higher than the typically extracted
empirical value for self-diffusion �0.57–0.58�. Figure 11
also includes theoretical results for the alternate NGP analog
of Q. The linear form is remarkably similar to its classic
analog except for the overall magnitude, again indicating a

strong connection between the early and final stages of cage
escape.

C. Form of the time dependence of the non-Gaussian
parameter

The temporal form of the classic and alternate non-
Gaussian parameters show similar volume fraction depen-
dences. At low volume fractions �below the naive MCT tran-
sition�, the doubly normalized NGP’s, �2�t /
�� /�2,max and
��t /
�� /�max, superpose well �not shown� and the short- and
long-time branches are nearly symmetric. At high volume
fractions, the long time branch of the NGP monotonically
broadens with increasing �. This trend is consistent with
simulation and experiment �40,47,49�, although the breadth
of the theoretical function is considerably smaller �54�. The
breadth of the alternate NGP weakly increases with volume
fraction primarily due to its short time tail �which also broad-
ens slightly in the classic NGP�.

A representative comparison of the shapes of the classic
and alternate NGP’s in the high volume fraction regime is
shown in Fig. 12. The inset of Fig. 8 demonstrates the short-
time branch of the alternate NGP is a linear function of time,
while the long-time branch decays exponentially with a char-
acteristic time of �1.5–2�
*. This sharp long-time cutoff con-
trasts with the more symmetric form of the classic NGP, and
is consistent with the idea �27� that the alternate NGP cap-
tures dynamical fluctuation effects associated with structural
relaxation.

V. TRAJECTORY DISPLACEMENTS AND MOBILITY
BIFURCATION

A. Evolution of displacement distributions

The real space analog of F�q , t�, the van Hove function,
quantifies the probability density a particle has moved a dis-

FIG. 11. Plot of the theoretical Q�����
��2,max�−1/4 as a func-
tion of volume fraction �squares� with a linear fit given by
−13.7�+8.2. The dashed curve is a �excellent� linear fit to the simu-
lation data �36� given by −18.8�+11.1. Also shown is the theoret-
ical result for the alternate NGP: �
��max�−1/4 �up triangles� with a
linear fit given by −8.7�+4.9.

FIG. 12. Classic �dotted line� and alternate �solid line� non-
Gaussian parameters for �=0.55, normalized by their maximum
values, as a function of normalized time.
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tance r in a time t. We follow previous simulation studies
�27,40,47� and define a displacement probability distribution
as the logarithim �base 10� of the single particle displace-
ments. This quantity has been computed at several character-
istic times: the � relaxation time, the Kramers time, times at
which the root mean square displacement �MSD� corre-
sponds to notable features of the nonequilibrium free energy
profile �localization length rL, maximum restoring force lo-
cation R*, barrier location rB, reaction point r†�, and times
when the root MSD equals one, two, and three particle di-
ameters. Typical results are presented in Fig. 13. At low vol-
ume fractions �no barrier� Fig. 13�a� shows the displacement
distribution has a unimodal shape. It is Gaussian at short
times, broadens to a non-Gaussian shape at intermediate
times, and recovers a Gaussian form at long times.

At high volume fractions the intermediate-time distribu-
tion becomes bimodal. The two peak bifurcation is well de-
lineated for �	0.5 �corresponding to barriers �kBT�, and
persists for a substantial period. For �=0.55 �Fig. 13�b�� the
distribution is bimodal for roughly 0.16 �r2�1/21. At the
onset of bimodality the displacement between the fast and
slow peaks is roughly one half a particle diameter �55�. Such
very strong bimodality is consistent with recent simulations
�47� of a polydisperse repulsive force fluid at �=0.55. The
bimodality is most prominent at a time of order the � relax-
ation time, and is essentially nonexistent at times when the
classic NGP parameter peaks. This is consistent with recent
BLJM simulations �27,40� which have established the classic
NGP does not accurately identify the time scale on which
dynamic heterogeneity and activated hopping is maximized.
The slow and fast peak locations evolve differently, with fast
peak growth and motion accounting for long-time escape. At
short times, the slow peak occurs roughly at �r2�t��, but
quickly saturates near the dynamic plateau length scale
�r2�plateau

1/2 �the displacement of most anomalous diffusion �26�
as shown in Fig. 2�. The diminishment of the slow peak,
which begins before the saturation of its location, culminates
in its disappearance when �r2�1/2=1−2. The emergence of
the fast peak coincides well with saturation of the slow dis-
placement. When the slow peak is significant in amplitude,
the fast peak moves only very slowly from its initial location,
which is beyond the barrier and closely coupled to the reac-
tion point. At long times �t�
*� the slow peak location in-
creases as t1/2.

The � relaxation time is a judicious characteristic time for
studying the bimodality since our results �as well as simula-
tions �27�� indicate the bifurcation of trajectories near 
* �or
the time the alternate NGP peaks� is particularly strong. Dis-
placement distributions at the � time for several volume frac-
tions �Fig. 14� show that the distribution broadens with in-
creasing volume fraction below the naive MCT transition,
and above �MCT separates into two peaks of comparable in-
tensities. The fast peak encompasses approximately sixty
percent of the trajectories at this time. The inset of Fig. 14
shows that the most probable displacement of the fast par-
ticle population at the � time, rfast�
*�, grows with volume
fraction, a trend directly correlated with the growing decou-
pling of the diffusion constant and � time with increasing �
�26,27�.

B. Recovery of a Gaussian distribution

A recent Brownian simulation study of the BLJM model
�56� quantified the onset time for Fickian diffusion as when
the displacement distribution peak reaches 90% of the value
corresponding to a purely Gaussian distribution. The root
MSD required to achieve such Gaussian behavior was re-
ported to increase from slightly less than a particle diameter

FIG. 13. Displacement distribution at key times and values of
the root MSD. �a� �=0.43, from left: �r2�t��1/2=0.1 �left solid
curve�, �r2�t��1/2=0.19 �inflection point, circles�, t=
* �dashed
curve�, t=
K �squares�, �r2�t��1/2=2 �right solid curve�. Vertical
marks on the upper axis corresponds to the position of the inflection
point of Feff�r�. �b� �=0.55. Solid and dashed lines, from left:
�r2�t��1/2=rL �left solid curve�, �r2�t��1/2=rB �circles�, t=
* �dashed
curve�, t=
K �squares�, �r2�t��1/2=2 �right solid curve�. Vertical
marks on the upper axis correspond to the positions of the local
minimum, maximum restoring force, barrier, and reaction point of
the effective free energy.
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at high temperatures to 2.7 particle diameters at the em-
pirically deduced Tc. We have compared our displacement
distribution results to a Gaussian function with the same
MSD. Since our data set is limited we cannot make precise
statements about when Fickian behavior is recovered. How-
ever, at a general level we can state that for ��0.5 the
displacement distribution when �r2�1/2=1 is Gaussian accord-
ing to the 90% criterion, but for ��0.5 it is not. At a quali-
tative level this is consistent with simulations �56�. Results
for the high barrier �=0.55 system are shown in Fig. 15.
When �r2�1/2=1 the distribution still has a significant slow

peak �not shown�, and therefore the fast �higher� peak is
substantially smaller than the corresponding Gaussian curve.
At �r2�1/2=2�3� the slow peak has disappeared and the �fast�
peak height is about 93�99�% of the Gaussian value. From
Fig. 2 the root MSD at the � time is 0.7, significantly
smaller than the Fickian onset displacement which is reached
at times well in excess of the � relaxation time. All these
theoretical results are consistent with the binary LJ mixture
simulations �56�.

VI. SUMMARY AND CONCLUSIONS

We have employed Brownian stochastic trajectory meth-
ods �26� to study non-Gaussian fluctuation effects in glassy
hard-sphere fluids based on a nonlinear Langevin equation
theory of single particle motion �9,29�. The incoherent dy-
namic structure factor on the cage scale exhibits a nearly
constant, modest degree of stretching, with the relaxation
curves for many volume fractions superimposing when time
is normalized by the � relaxation time. The � time increases
exponentially with entropic barrier height, or as a MCT-like
critical power law in the volume fraction until barriers ex-
ceed 5kBT. The deviation of the incoherent dynamic struc-
ture factor from a Gaussian form increases markedly with
volume fraction as demonstrated by the rapidly growing am-
plitude of the classic NGP which is well described by a
power law in the maximum restoring force of the nonequi-
librium free energy profile. At the naïve MCT volume frac-
tion the NGP peak is 1/3, in remarkable �and surprising�
accord with full ideal MCT calculations �3,40�. However,
with increasing volume fraction and the emergence of sig-
nificant entropic barriers the NGP maximum grows very
strongly reaching a value of 12 for �=0.56. The time as-
sociated with the NGP peak is comparable with the � relax-
ation time at low volume fractions, but becomes much
smaller than the � time when barriers are significant. The
shift of the corresponding MSD to smaller displacements
with volume fraction is strong, and the relevant length scale
approaches the displacement of maximum cage restoring
force, R*.

An alternate non-Gaussian parameter �27�, ��t�, was also
computed and is of a different shape than �2�t�. However, its
peak magnitude is proportional to that of the classic analog,
suggesting a deep connection between this measure of non-
Fickian motion on intermediate �late � process� and long ��
process� length scales. The time associated with the alternate
NGP peak is very nearly the � relaxation time for all volume
fractions, and long time exponential decay is found. How-
ever, the corresponding root MSD increases monotonically
with volume fraction from 0.4 to 1, consistent with the
increase of the MSD at the � relaxation time.

Space-time decoupling has been quantified via the quan-
tity R�q�=q2D
�q�. Below the naive MCT transition the
R�q�1 Gaussian result is found in accord with full MCT
calculations �40�. However, at higher volume fractions R�q�
becomes increasingly wave vector dependent and F�q , t� is
strongly nondiffusive. These changes reflect decoupling of
translational motion and relaxation �26�, which our model-
independent analytic analysis �38� suggests is a consequence

FIG. 14. Displacement distributions at the � relaxation time for
�=0.43 �solid curve�, 0.465 �circles�, 0.5 �squares�, 0.55 �dashed
curve�. Inset is the most probable displacement of the fast particle
population at t=
*.

FIG. 15. Displacement distributions for �=0.55 at times corre-
sponding to �r2�1/2=1 �filled circles�, 2 �open squares�, and 3
�shaded diamonds� particle diameters. Curves are Gaussian distri-
butions with corresponding mean square displacements and consis-
tent units.
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of strong coupling of particle mass transport and �single par-
ticle� stress relaxation on finite length scales. Remarkable
agreement of the shape and scaling properties of the theoret-
ical R�q�, and the Fickian crossover length scale, with a re-
cent simulation study of the binary LJ mixture �43� is found.
The particle displacement required for recovery of the diffu-
sive form of F�q , t� increases by a factor of three as volume
fraction �barrier� grows from 0.5 to 0.57 �1–6.7 kBT�.

Displacement distributions exhibit non-Gaussian behavior
at intermediate times, evolving into a bimodal form with
slow and fast subpopulations at high volume fractions asso-
ciated with a broad distribution of hopping rates. This behav-
ior is directly correlated with the growth of the decoupling
factor D
* �fractional Stokes-Einstein relation� �26� and a
nondiffusive wave vector dependence of the � time �26,38�.
The root MSD required to recover a real space Gaussian
distribution increases with volume fraction, exceeding a par-
ticle diameter as barriers become of significant height.

Our primary goal has been to investigate how much of the
strongly non-Gaussian fluctuation phenomena associated
with glassy dynamics as manifest in two point dynamic cor-
relations can be understood from the elementary events of
transient localization, early stages of cage escape, and acti-
vated hopping of single particles on the cage length scale.
We believe our results are relevant to slow dynamics in
dense hard-sphere fluids, simple thermal liquids, and ather-
mal colloidal suspensions. However, the presence of hydro-
dynamic interactions �HI�, residual charge and particle size
polydispersity in real suspensions complicates to some extent
quantitative confrontation with experiment. Certainly the
question of how many body hydrodynamic interactions
modify activated processes is not well understood. Early ar-
guments �3� and some experiments �56� claimed hopping
processes are suppressed in colloidal suspensions due to lack
of momentum conservation and/or HI. It is true that ideal
MCT critical power laws can be well fit to the diffusion
constant and � time of hard-sphere suspensions �up to
0.57� �3,57�. However, there remains the fact that experi-

ments �45,46� and/or Brownian and Newtonian simulations
�36,47� on polydisperse hard-sphere-like fluids do find very
large non-Gaussian parameters, significant translation-
relaxation decoupling, and non-Gaussian particle distribu-
tions including bimodal forms which is not predicted by
MCT. Within the context of our approach, and given the
recent simulation findings that activated processes emerge
above the empirically deduced MCT transition �6–8�, a pos-
sible resolution of this puzzle is that dynamics in the precur-
sor regime involves activated hopping over relatively low
entropic barriers. The consequences of the latter for physical
quantities not directly determined by, and/or not very sensi-
tive to, non-Gaussian fluctuation effects might well be accu-
rately described by a self-consistent Gaussian-like theory of
density fluctuations such as ideal MCT. Concerning simula-
tions of thermal mixtures �BLJM� and hard-sphere-like flu-
ids, quantitative complications arise since the models gener-
ally involve polydispersity, repulsive forces with some
degree of softness, and/or weak attractive interactions. Nev-
ertheless, within these caveats our many present and prior
�26� predictions for the nature and origin of multiple non-
Gaussian fluctuation effects based on a single simple �but
nonperturbative� microscopic physical picture devoid of fit-
ting parameters appear to be in excellent qualitative, and
often semiquantitative, agreement with a variety of experi-
ments and computer simulations. We hope new simulations
and experiments are designed and performed to test our the-
oretical predictions.
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